

Integration Description
Document version 1.2

Contents

1 Introduction .. 4

2 References ... 4

3 System Overview ... 4

3.1 Compact Talk Service ... 5

3.2 CTClient API ... 5

3.3 Webservice ... 5

3.4 Import and Export .. 5

4 Service Concept ... 5

4.1 Service Types ... 6

4.1.1 BasicService ... 6

4.1.2 BasicControllableService .. 6

4.1.3 BasicSharableService ... 6

4.1.4 ServiceManager .. 6

4.1.5 ServiceDescriptor ... 7

5 Basic Concepts .. 7

5.1 Order handling .. 7

5.1.1 Status flow acknowledged by operator 8

5.1.2 Status flow acknowledged by client... 9

5.2 Event handling .. 9

5.3 Data Model .. 10

5.3.1 Tray .. 10

6 Common programming cases .. 11

6.1 External acknowledge ... 11

6.2 Stock management ... 11

6.3 Order synchronization ... 11

6.4 Maintenance .. 12

6.4.1 ReturnTrays .. 12

6.4.2 ClearOrderQueue ... 13

7 Accessories and their configuration 13

7.1 Method call .. 13

7.2 Order import .. 14

7.3 Tray import .. 14

8 CTCLIENT API ... 14

8.1 CTConnection ... 14

8.2 Stop Codes ... 15

8.2.1 General ... 15

8.2.2 Stop Code Definitions ... 15

8.2 Code Samples ... 19

8.2.1 Sample 1 .. 19

8.2.2 Sample 2 .. 19

8.2.3 A more complete sample, Mini WMS 20

8.2.4 How to get Tray example .. 27

9 Web Service ... 27

9.1 Converting a CT 1.x client to 2.x .. 28

9.1.1 New event handling .. 28

9.1.2 Method translation table .. 28

10 XML Interface ... 30

10.1 Overview ... 31

10.2 Commands .. 31

10.2.1 AddToQueue method .. 31

10.2.2 ExtAckOrder ... 36

10.2.3 AddTrayConfig .. 37

10.2.4 ResetElevator ... 38

10.3 Response Messages ... 38

10.3.1 CommandResponse ... 38

10.3.2 OrderStatusResponse .. 39

10.3.3 TaskDoneResponse ... 39

11 Import and Export ... 40

11.1 Import .. 40

11.2 Export .. 40

11.3 Tray configuration import ... 40

11.3.1 Configuration .. 40

11.3.2 Format .. 40

1 Introduction
This document describes the third party interfaces used to integrate with Compact
Talk. The document will provide a brief system overview and a description of the
three ways available to integrate with Compact Talk . CTClient API(Application
Programming Interface), XML- Interface and import and export from external
sources.
Compact Talk can be communicated with using the following formats:

▪ Windows Communication Foundation (WCF)
Compact Talk offers an API called CTClient that simplifies integration and will
give full access to all functionality. CTClient is the recommended solution for
systems that supports the .NET platform. Protocols that are supported are
TCP/IP and IPC (Named Pipes).

▪ Web services
To simplify integration from systems that doesn’t support the .NET platform an
HTTP based web service is also integrated in Compact Talk. There is no full
duplex communication available, so events have to be polled manually.
The Web service supports SOAP 1.1 and follows WS-I BP 1.1. IIS does not
have to be installed.

▪ XML Interface
Handles basic command sent via XML-files.

▪ Import- and export interface
▪ Handles import of orders and export of order data via flat files. The

visual configuration interface allows for a lot of flexibility.

2 References
[1] Compact Talk V3 Configuration Manual
[2] API reference manual (CompactTalkAPI.chm)

3 System Overview
Compact Talk is divided into two major parts, Compact Talk service and CTClient
API as shown in Figure 1.

CompactTalk
Device

Management

Import
Management

Export
Management

Command
Connection

Protocol
Protocol

Device

Protocol
Protocol
Driver

Pick Display
Pick Display

Elevator
Elevator

Elevators

Accessories

CompactTalk Service Plugins Hardware Devices

CTClient API

Persistent
Storage

Webservice

Protocol
Protocol

Import/
Export

Figure 1, System Overview

3.1 Compact Talk Service

The service application handles the communication with third party implementations,
order management, import and export management and persistent storage
management. It is possible to access the Command connection directly using
Windows Communication Foundation (WCF) but this document will not cover that
method. It is also possible to access the CommandConnection via a HTTP as
described in Section 9.

3.2 CTClient API

The client API covers connection management, error handling and synchronized
event dispatching. This API is fully covered by this document. This API makes use of
the Command connection.

3.3 Webservice

The webservice is a standard SOAP-based service accessible via HTTP.

3.4 Import and Export

These interfaces allow import of orders and export of selected order info triggered by
status changes. A basic implementation of these interfaces that uses text files will be
covered by this document.

4 Service Concept
Most active and replaceable components in Compact Talk are based on a class
called BasicService or one of its sub classes. A service has a state that can be
monitored and a few methods to control the state.
Services are handled by a service manager that stores all service references in a
hierarchical structure. An example of a hierarchy that has two partitions, three
elevators and one accessory per elevators is shown below.

Id = Devices

GlobalId = Devices

Id = 1

GlobalId = Devices.1

Id = Panel1

GlobalId = Devices.1.Elevator1.Panel1

Id = Elevator1

GlobalId = Devices.1.Elevator1

Id = 2

GlobalId = Devices.2

Id = Elevator2

GlobalId = Devices.2.Elevator2

Id = Elevator3

GlobalId = Devices.2.Elevator3

Id = Panel1

GlobalId = Devices.2.Elevator2.Panel1

Id = Panel1

GlobalId = Devices.2.Elevator3.Panel1

DeviceManager Partitions Elevators Accessories

Figure 2, Example of a service hierarchy

4.1 Service Types

There are five classes and an enumerated type involved in the service concept as
shown in figure 3.

«signal»+OnServiceStateChanged()

+Id : string

+GlobalId : string

+Owner : BasicService

+Children : BasicService

+ErrorText : string

+State : ServiceState

BasicService

+Users : BasicService

BasicSharableService

+Pause()

+Resume()

BasicControllableService

+Initializing = 0

+Stopped = 1

+Starting = 2

+Running = 3

+Paused = 4

+Error = 5

«enumeration»

ServiceState

ServiceManager ServiceDescriptor

Figure 3, Service class hierarchy

4.1.1 BasicService

This type is the base class of the service types. It contains properties for identity,
relations and state.
Communication drivers, for example, are based on this class. It also has an event
handler that will fire an event each time the state is changed.

4.1.2 BasicControllableService

This class is a sub class of BasicService and it adds two methods to control the state
of a service. Elevator devices, for example, are based on this class.

4.1.3 BasicSharableService

This type is also a sub class of BasicService. What’s special with an instance of this
class is that it can be referenced by multiple sources that share a single resource.
The bus driver in the picture below is an example of a component that shares one
resource. In this case it shares a multi drop modem to one or more elevator devices.

Elevator2

Node = 2

Elevator1

Node = 1

Bus

Driver

Elevator1

Node = 1

Elevator1

Node = 1

Modem

Elevator1

PLC

Elevator2

PLC

Figure 4, An example wich uses a BasicSharableService

4.1.4 ServiceManager

The service manager is a container for services and has methods for browsing the
service hierarchy, retrieving current state of a service. It also has an event handler
that will fire each time the state of a service is changed.

4.1.5 ServiceDescriptor

This class describes a loaded service in the server. For example elevator devices,
accessories and ERP-plugins.

5 Basic Concepts
CT is using pick orders to order the elevators to retrieve trays to the operators. A
pick order contains information about which elevator, tray and which service opening
to send it to and information that can be displayed on accessories.

5.1 Order handling

Pick orders are put on a queue before being dispatch the respective elevator, which
means that a call to AddToQueue doesn’t immediately put the order in the elevator,
therefore it’s important to keep track of the status on orders.
Orders are, after picking or placing is done, acknowledged either by the operator or
externally by the client. The argument noReturnOfTray in the call AddToQueue
controls whether it’s allowed to acknowledge the order on the operator panel or not.
If set to 1, ExtAchOrder needs to be called to return the tray.
The different statuses an order can have is listed below:
Status Description
Posted The order is passive and needs to be activated for it to be

dispatched.
Selected The order is active and are available for selection by the

dispatcher.

Sent
The order has successfully been dispatched to the elevator
device.

NextAtPlace Indicates that the order is next in turn to enter an opening.

AtPlace
Indicates that the tray that was ordered is at picking
position.

TaskDone
The order has been acknowledged by the operator or the
client.

Statuses when external confirmation is used
Accepted The order has been confirmed by operator and client.

AcceptedStillAtPlace
The order has been confirmed by the operator and client
but is waiting for external acknowledge from the client.

TaskDoneStillAtPlace
The order has been confirmed by the operator but is still
not confirmed by the client.

Error status
Refused The order was rejected by the elevator device. The order is

considered non active a can be deleted.
An example of the contents in the queue could look like below:

Order Tray

1 10

2 11

3 12

4 13

Status

AtPlace

NextAtPlace

Sent

Selected

5.1.1 Status flow acknowledged by operator

WMS Compact Talk Elevator

AddToQueue

FetchTray

Status = Sent

Status = AtPlace
Status = AtPlace

OrderDone

Status = NextAtPlace

Status = TaskDone

OrderId

MessageId

Acknowleged by
operator

5.1.2 Status flow acknowledged by client

WMS Compact Talk Elevator

AddToQueue

FetchTray

Status = Sent

Status = AtPlace
Status = AtPlace

OrderDone

Status = NextAtPlace

Status = TaskDone

OrderId

MessageId

ExtAckOrder

5.2 Event handling

The status changes of orders are dispatched as events to the client, the method
differs depending on how you connect. CTClient API will do the work for you by
polling the event queue and dispatch them as events to the application. When
connecting to the WebService interface you have to explicitly poll for new events on
the event queue.
Proper event handling is important because of timing issues caused by the fact that
the order dispatcher doesn’t dispatch the order to the elevator immediately on the
call to AddToQueue.
For example, let us say you only want one active order at a time but you don’t want
the tray to be returned between orders if they target the same tray, then you have to
make sure the second order have reached the elevator before acknowledging the
first order, otherwise the elevator doesn’t know to let the tray stay at the opening.
You do that by waiting for the status on the second order reaches Sent or higher.
See diagram below:

WMS CompactTalk Elevator

AddToQueue order 1

OrderID
FetchTray

TransIDStatus = Sent

Status = NextAtPlace

Status = AtPlace AtPlace

AddToQueue order 2

OrderID
FetchTray

TransIDStatus = Sent

Status = NextAtPlace

ExtAck order 1 ExtAck order 1

OrderDoneTaskDone order 1

Wait

5.3 Data Model

Description of data types and models

5.3.1 Tray

In an elevator there can be multiple trays. Each tray holds specific characteristic
depending on the height of articles placed on the tray, and the total amount of weight
it holds e.g.
Brick layout is not stored in Compact Talk and can only be gathered from WMS.

Field Name Type Description

Tray object Keeps information about a tray in the
elevator

tray:Blocked bool If tray is blocked and cannot be used

tray:Height int Height of the tray in mm (occupied space in
height).

tray:Level int Elevator G1: Represent Access Level
Elevator G2: Represent position of tray from
bottom limit position, to top height of current
tray in mm.

tray:Weight int Weight of the tray in gram

tray:Id int Numerical id of tray

tray:Borrowed bool Indicate that a tray has been borrowed from
the elevator and does not currently reside in
the elevator.

6 Common programming cases
This section lists common integrations cases which covers the recommended
minimum of functionality that should be implemented when integrating with Compact
Talk. These cases are also covered by the sample application MiniWms.

6.1 External acknowledge

The external acknowledge method ExtAckOrder is useful when you want the WMS-
system to be the one that have the last word before the tray is returned. To
accomplish this you have to tell the elevator, when you add your order, that an
external acknowledge is required before the tray is returned. You do that by setting
the argument noReturnOfTray equal to 1 in the method AddToQueue. To be allowed
to do the external acknowledge on the order it have to have a status which states
that it’s on the table in the elevator.

6.2 Stock management

A simple implementation of stock management is shown in the piece of code below.
When the event CTOrderStatusChangeEvent is received you can switch on the
Mode property of the order tied to the event. The mode of the order is set when you
call the AddToQueue method.
void OnOrderStatusChangedEvent(CTOrderStatusChangeEvent evt)
{
 if (evt.Order.Status == OrderStatus.TaskDone)
 {
 //Do stock management based on the OrderMode
 if (ctOrder.Mode == OrderMode.OUT)
 //Subtract the evt.Order.AckQuantity from the quantity on the article record
 else if (ctOrder.Mode == OrderMode.IN)
 //Add the evt.Order.AckQuantity to the quantity on your article record
 else if (ctOrder.Mode == OrderMode.INV)
 //Replace the quantity on your article record with evt.Order.AckQuantity
 }
}

6.3 Order synchronization

Order synchronization is useful when your system has been down while Compact
Talk still had active orders on its queue. What could have happened during this time
is that the operator acknowledged an order so you missed the event when the order
status was set to TaskDone. This leads to problems with stock management since
you haven’t been given the acknowledged quantity from the operator. The code
below shows code and description of how to handle this problem.
public class Class1()
{
 //Keep e list of orders sent to Compact Talk
 List<OrderRecord> m_OrderCache = new List<OrderRecord>();
 void SynchronizeOrders()

 {
 for (int i = 0; i < m_OrderCache.Count; i++)
 {
 //Retrieve the order from Compact Talk that has the same orderId as your cached order
 //The GetOrder method will first look for the order in Compact Talk’s order queue, if
 //it’s not found there it will look in the table of historical order data
 PickOrder ctOrder = m_CompactTalk.Command.GetOrder(m_OrderCache[i].CTOrderId);
 if (ctOrder.Status == OrderStatus.Historical)
 {
 //A historical order means that it has gone trough a full status cycle and
 //now only exists as an historical record in the database.
 if (ctOrder.Mode == OrderMode.OUT)
 //Subtract the evt.Order.AckQuantity from the quantity on the article record
 else if (ctOrder.Mode == OrderMode.IN)
 //Add the evt.Order.AckQuantity to the quantity on your article record
 else if (ctOrder.Mode == OrderMode.INV)
 //Replace the quantity on your article record with evt.Order.AckQuantity
 //Remove the order from the cache and do implementation specific maintenance
 }
 else
 {
 //Just uppdate the status on your cached order here
 m_OrderCache[i].CTStatus = ctOrder.Status.ToString();
 }
 }
 }
}

The method SynchronizeOrders in the class above should be called every time you
start your system or after a reconnect to Compact Talk after a dropped connection.

6.4 Maintenance

To be able to perform the maintenance methods listed below the elevator/elevators
needs to be in a paused state. Paused state means that the dispatching of new
orders to the elevator/elevators is put on hold. The method to be used is called
PauseService.
The maintenance methods have an argument called servicePath which is used to
select on what level in the device hierarchy that is targeted. The servicePath can
target all elevators, a partition or a specific elevator.
To target all elevators use the servicePath “Devices”, for a partition use
“Devices.<partitionid>” and for a specific elevator you can use either
“Devices.<partitionid>.<elevatorid> or the servicePath alias which equals the
elevator id. So for an elevator with id “E1” on partition “P1” the servicePath could
look like “Devices.P1.E1” or just “E1”.
When maintenance is done don’t forget to call ResumeService.

6.4.1 ReturnTrays

This method is used to abort all active orders in the elevator and force the elevator to
return active trays to their storage position. The status of the active orders will be
rolled back to “Selected” which means they are ready to be selected when the
dispatching is resumed.
Two operations exist for returning trays, and will trigger return tray/s and reset
orders.

• ReturnTrays, support in G1, G2, Sim

• ReturnTraysByOpening, support in G2
Note: Service must be paused before sending ‘ReturnTray’ command.

6.4.2 ClearOrderQueue

This method is used when you want to delete all but active orders from the elevators
covered by the given servicePath. To delete all orders covered by the servicePath
you need to abort the active orders by calling the method ReturnTrays described
above.
For you who are porting your integration from CT v1 it’s important to know that this
method doesn’t do all the things the old one did. To do what the old one did you
need to first call PauseService then ReturnTrays followed by ClearOrderQueue. The
reason for the call to ReturnTrays is to rewind the status on active orders to
“Selected” since ClearOrderQueue will otherwise leave them on the queue.

7 Accessories and their configuration
There is a number of accessories available for the elevators like lightbar, laserpointer
and pickdisplay. To make them work properly necessary configuration has to be
added to Compact Talk in one way or another. There are two types of configurations
depending of which type of accessory is being used, a single target box and a full
tray layout which is composed of a list of boxes. The box also has two custom
properties that can be used by the accessory.
The table below shows which configuration is needed for which accessory.

Accessory Single box Full layout

Lightbar X (Property that gives the
depth has to be provided)

X (The depth property is
calculated)

Laserpointer X X

Pickdisplay X

There are two different ways to add the necessary configuration and they are listed
in the table below.

Type Method call Order import Tray import

Single box AddToQueueWithSingleBoxCoords X

Full layout AddTrayConfig X

NOTE: Article pictures sent to the accessory Pickdisplay must follow the following
prerequisites: 1920x1080px or maximum 5MB/picture.

7.1 Method call

Method calls are done via the external interface and the methods are described in
the API reference documentation [2].
The method AddToQueueWithSingleBoxCoords will add the order and the rectangle
representing the target box in one call.
AddTrayConfig will add the full layout of a tray. This method can be called just before
a call to AddToQueue to add the configuration for the targeted tray or it can be called
multiple times on startup to add all configuration at once.
To be able to recover the configuration when Compact Talk doing a restart with
unfinished orders in its queue it will store the configuration in a cache file and reload

it from there on startup. Because of the cache tray configuration only needs to be
added to Compact Talk a second time if it has changed.

7.2 Order import

How to add single box configuration with the order import method is described in
section 11 and in the Configuration Manual [1].

7.3 Tray import

Adding full tray configuration via tray import is described in section 11.3.

8 CTCLIENT API
The client API [2] covers connection management, error handling and synchronized
event dispatching. It is implemented as a .NET assembly named
Weland.CompactTalk.Client.dll.
The purpose of the client API is to simplify the integration work for a third party
implementer. The main class of the API is called CTConnection.

8.1 CTConnection

Properties:

• Command (CommandProxy)
A reference to the proxy representing a connection to the command interface
of the service.

• IsConnected (bool)
True if a connection has been established otherwise false.

Methods:

• void Connect(string host, int commandPort, int eventPort)
Connects to the server, via TCP/IP, at the given host and port numbers.

• void Connect(string host)
Connects to the server, via TCP/IP, at the given host using the default port
numbers.

• void Connect()
Connects locally to the service on a named pipe.

• void Disconnect()
Disconnects from the service.

Events:

• event ClientQueueChanged OnQueueChanged
Is fired when an order is added or removed from the queue.

• event ClientOrderStatusChanged OnOrderStatusChanged
Is fired when the status is changed on an order.

• event ClientServiceStateChanged OnServiceStateChanged
Is fired when the state of a service has been changed.

• event ClientAckRequest OnClientAckRequest
Is fired when external confirmation is activated (configurable) and an order

reached the status TaskDone. Client must respond with a call to the method
ConfirmAckRequest, or the order will remain on the queue.

• event ClientOrderPriorityChanged OnOrderPriorityChanged
Is fired when the priority of an order is changed.

• event ClientOpeningModeChanged OnOpeningModeChanged
Is fired when the mode is changed on a specific opening.

• event ClientOpeningUserChanged OnOpeningUserChanged
Is fired when the logged in user is changed on a specific opening.

• event ClientTrayWeightChanged OnTrayWeightChanged
Is fired when the weight of a specific tray is changed.

• event ClientTrayHeightChanged OnTrayHeightChanged
Is fired when the height of a specific tray is changed.

• event ClientOrderReturned OnOrderReturned
Is fired when an order reached TaskDone and the tray is returned to its
position in the elevator. If multiple orders are picked from the same tray, an
event for each order will be sent. The event contains orderId.

• event ClientStopCodesChanged OnStopCodesChanged
Is fired when the list of stop codes is changed. More information in section
8.2.

8.2 Stop Codes

8.2.1 General

Stop codes in Compact Talk is given as a history list with up to ten latest stop codes.
The latest stop code is always stored in the first position in the list and the oldest in
last position. The OnStopCodesChanged event is fired when the stop code list is
changed. The event contains the new list with stop code information,
List<StopCode>.

StopCode class:
public class StopCode
{
 //See stop code definition list for valid codes
 public int Code { get; set; }

 //Describes the cause of the stop
 public string Cause { get; set; }
}

8.2.2 Stop Code Definitions

Stop cause Stop code

State change 1

Substate change 2

Machine restarted 3

Sequences reset 4

E-Stop 1000

Lightcurtain 1001

Pit sensor blocked 1010

Pit sensor blocked, fetch from opening 1011

Pit sensor blocked, fetch from storage 1012

Brake contactor 1 error 1020

Brake contactor 2 error 1021

Brake relay 1 error 1022

Brake relay 2 error 1023

Lost encoder module, upper level 1030

Lost encoder module, lower level 1031

Inverter position changed on reboot 1032

Inverter has lost reference position 1033

Inverter error code present 1034

Reference search failed, elevator level 1040

Invalid position, upper level 1041

Invalid position, lower level 1042

Elevator on lower limit switch 1050

Elevator on upper limit switch 1051

Position error elevator, not at tray storage position 1060

Position error elevator, not at opening 1061

Position error elevator, not in unhook interval 1062

Position error elevator, not at unhook position 1063

Position error elevator, not at temporary storage 1064

Position error elevator, not in unhook interval of temporary
storage

1065

Position error elevator, not at unhook of temporary storage 1066

Position error upper level 1070

Position error lower level 1071

Weight measurement error 1080

Tray returned to opening, too heavy 1081

Heightmeter error 1090

Tray too high for limited height opening 1091

Tray returned to opening, too high 1092

Tray fetch error opening, ghost 1100

Tray fetch error at storage, ghost 1101

Already a tray in opening, can't move tray to opening 1110

Already a tray in opening, twin shift, can't move tray to opening 1111

Level position blocks elevator movement, not free 1120

Lower level not on sensors, can't fetch from opening twin w/o
extractor

1121

Upper level not on sensors, can't fetch from opening twin w/o
extractor

1122

No level at pick position, can't fetch from opening twin w/o
extractor

1123

Both levels not on sensors, can't fetch from storage 1124

Level not on sensors, can't fetch from storage 1125

Extractor or door blocks elevator movement 1126

Levels not on sensors, can't load tray 1127

Levels not on sensors, can't unload tray 1128

Tray in pick position does not match upper level tray or step 1130

Tray in pick position does not match lower level tray or step 1131

Tray on lower level does not match NextTray 1132

Tray on upper level does not match NextTray 1133

Tray cannot be reached by either level 1140

Tray cannot be reached 1141

No storage position set for requested tray 1142

Invalid tray position 1150

Invalid temporary tray position 1151

Invalid tray position, fetch next sequence reset 1152

Invalid tray unhook position 1153

Invalid tray unhook position, fetch next sequence reset 1154

Invalid tray position, can't twin shift at storage 1155

Invalid tray unhook position, can't twin shift at storage 1156

Invalid tray unhook position, temporary storage 1157

Invalid tray unhook position, fetch sequence reset 1158

Invalid tray position, fetch sequence reset 1159

Requested tray is blocked 1160

User has no access right to requested tray 1161

User has no access right to requested NextTray 1162

No temporary storage found 1170

Storage blocked by temporary tray 1171

No storage to return temporary tray, optimisation 1172

Inverter movement physically blocked 1180

Air flow (ATEX) 2000

Gas warning (ATEX) 2001

Gas alarm (ATEX) 2002

Fire alarm 2010

Sprinkler zone 2011

Borrow tray trolley not removed 2020

Borrow tray trolley not in position 2021

Tray already on borrow tray trolley 2022

No tray on borrow tray trolley 2023

Requested tray is borrowed 2024

Requested tray is not borrowed 2025

Load beam not installed 2030

Tray not correctly placed on opening sensors 2040

Tray fetch error operation station 2050

Tray placement error operation station 2051

Position error elevator at operation station 2052

Tray already in operation station 2053

Level not on sensors, can't fetch from operation station 2054

No tray in operation station 2055

Tray fetch error transfer station 2060

Tray placement error transfer station 2061

Position error elevator at transfer station 2062

Tray already in transfer station 2063

Chain and telescope not in inner position 2064

Requested tray is not transferred 2065

No tray in transfer station 2066

Tray in transfer station not correctly placed 2067

No storage found for tray to be transferred in 2068

Level not on sensors, can't fetch from transfer station 2069

UPS, on battery 2080

Tray fixture not locked 2090

Side table order mismatch 2100

Side table chain move to elev disallowed 2101

Side table chain move to pick disallowed 2102

Side table screw move to elev disallowed 2103

Side table screw move to pick disallowed 2104

Side table screw move to service disallowed 2105

Machine zone not enabled 2120

8.2 Code Samples

All the code samples are available in the SDK release of Compact Talk.
To be able to build a client application these assemblies needs to be referenced:

• Weland.CompactTalk.Framework.dll

• Weland.CompactTalk.Client.dll

• System.ServiceModel

There is no error handling in these samples.

8.2.1 Sample 1

This is a simple implementation that connects and retrieves the version of the
Compact Talk service.
CTConnection connection = new CTConnection();
connection.Connect();
Version version = connection.Command.Version;
connection.Disconnect();

8.2.2 Sample 2

The second sample is a little more complete client that adds a pick order to the
service and prints the status changes while it is executed.
using System.Text;
using Weland.CompactTalk.Client;
using Weland.CompactTalk.Framework.OrderManagement;
using Weland.CompactTalk;

namespace SimpleClient
{
 class Program
 {
 static void Main(string[] args)
 {
 //Create an instance of the CTConnect type.
 CTConnection con = new CTConnection(null);

 //Connect to service.
 con.Connect();
 //Hook up the order status event.
 con.OnOrderStatusChanged += new ClientOrderStatusChanged(OnClientOrderStatusChanged);
 Console.WriteLine("Adding an order to Compact Talk service");
 //Add an order to the service
 con.Command.AddToQueue("SimpleClient:1", "Sim_1", 1, "", 1, "", "",
 OrderMode.OUT, 0, 1, "", 100, "", "", "", "", "", "", true);
 //Wait for input to terminate the program.
 Console.ReadKey();
 //Disconnect from the service.
 con.Disconnect();

 }
 //This method is called every time the status is changed on the order.
 static void OnClientOrderStatusChanged(CTOrderStatusChangeEvent evt)
 {
 Console.WriteLine("Status changed on order from " + evt.OldStatus.ToString()
 + " to " + evt.Order.Status.ToString());
 }
 }
}

The console output looks like shown in figure 5.

Figure 5, Console output from sample 1

8.2.3 A more complete sample, Mini WMS

This is a more complete sample application the covers most of the cases. It’s a
simple WMS application that is capable of creating pick orders based on a list of
available article records.

A file is used for persistent storage of the order list instead of a database.

Figure 6, MiniWMS main window
The main application window contains an order list, an article list, a button to create
a pick order and a button to do an external acknowledge of an order.

Figure 7, Dialog to enter pick order information

The Create Order dialog is used to enter information needed to create the pick order.
The complete code listing of the main form of the application is available below.
There is a lot of code related to presentation of information in the listing, but the
comments should help to isolate the functional bits.
public partial class MainForm : Form
 {
 //List of orders sent to Compact Talk
 List<OrderRecord> m_MyOrders = new List<OrderRecord>();
 //Index of orders sent to Compact Talk
 Dictionary<int, OrderRecord> m_MyOrdersByCTId = new Dictionary<int, OrderRecord>();
 //List of article records
 List<ArticleRecord> m_MyArticleRecords = new List<ArticleRecord>();
 //Index of articles
 Dictionary<int, ArticleRecord> m_MyArticleRecordsById = new Dictionary<int, ArticleRecord>();

 //Client api connection
 CTConnection m_CompactTalk;
 public MainForm()
 {
 InitializeComponent();
 //Disable acknowledge button until we have a selected row in order view
 buttonExtAck.Enabled = false;
 //Generate 10 articles and add them to the list and index
 for (int i = 1; i <= 10; i++)
 {
 ArticleRecord ar = new ArticleRecord();
 ar.ArticleNo = i.ToString();
 ar.ArticleDesc = "Article " + i.ToString();
 ar.Elevator = "Sim_1";
 ar.Id = i;
 ar.Quantity = 100;
 ar.TrayNo = 1;

 m_MyArticleRecords.Add(ar);
 m_MyArticleRecordsById.Add(ar.Id, ar);
 }
 //Populate article view with the available article records
 for (int i = 0; i < m_MyArticleRecords.Count; i++)
 {
 ListViewItem lvItem = listViewArticles.Items.Add(m_MyArticleRecords[i].ArticleNo);
 lvItem.SubItems.Add(m_MyArticleRecords[i].ArticleDesc);
 lvItem.SubItems.Add(m_MyArticleRecords[i].Quantity.ToString());
 lvItem.SubItems.Add(m_MyArticleRecords[i].Elevator);
 lvItem.SubItems.Add(m_MyArticleRecords[i].TrayNo.ToString());
 lvItem.Tag = m_MyArticleRecords[i].Id;
 }
 //Load our orders from persistent storage
 LoadOrders();
 //Connect to Compact Talk
 try
 {
 m_CompactTalk = new CTConnection(this);
 m_CompactTalk.OnOrderStatusChanged += new
 ClientOrderStatusChanged(OnOrderStatusChangedEvent);
 m_CompactTalk.OnQueueChanged += new ClientQueueChanged(OnQueueChangedEvent);
 m_CompactTalk.Connect();
 }
 catch (Exception e)
 {
 MessageBox.Show("Failed to connect to Compact Talk");
 throw e;
 }
 //Do a recovery in case orders been acknowledge while this application was shut down
 SynchronizeOrders();
 }
 void LoadOrders()
 {
 //Deserialize order list from file storage
 using (Stream file = File.Open("MyOrders.dat", FileMode.OpenOrCreate))
 {
 BinaryFormatter bformatter = new BinaryFormatter();
 if (file.Length > 0)
 m_MyOrders = (List<OrderRecord>)bformatter.Deserialize(file);
 }
 //Populate order view with available orders
 for (int i = 0; i < m_MyOrders.Count; i++)
 {
 ListViewItem lvItem = listViewOrders.Items.Add(m_MyOrders[i].ArticleNo);
 lvItem.SubItems.Add(m_MyOrders[i].ArticleDesc);
 lvItem.SubItems.Add(m_MyOrders[i].Quantity.ToString());
 lvItem.SubItems.Add(m_MyOrders[i].Operation);
 lvItem.SubItems.Add(m_MyOrders[i].Elevator);
 lvItem.SubItems.Add(m_MyOrders[i].TrayNo.ToString());
 lvItem.SubItems.Add(m_MyOrders[i].ServiceOpening.ToString());
 lvItem.SubItems.Add(m_MyOrders[i].CTStatus);

 lvItem.Tag = m_MyOrders[i].CTOrderId;
 //Add the order to the order index
 m_MyOrdersByCTId.Add(m_MyOrders[i].CTOrderId, m_MyOrders[i]);
 }
 }
 void SaveOrders()
 {
 //Serialize order list to file storage
 using (Stream orderFile = File.Open("MyOrders.dat", FileMode.OpenOrCreate))
 {
 BinaryFormatter bformatter = new BinaryFormatter();
 bformatter.Serialize(orderFile, m_MyOrders);
 }
 }
 void SynchronizeOrders()
 {
 //For each order in our order list, check to se if it matches Compact Talks order
 for (int i = 0; i < m_MyOrders.Count; i++)
 {
 PickOrder ctOrder = m_CompactTalk.Command.GetOrder(m_MyOrders[i].CTOrderId);
 if (ctOrder == null)
 {
 //Compakt Talk has never seen an order with this id. This should never happen.
 continue;
 }
 //The order has been acknowledged while we where shut down and now only exist in
 historical storage
 if (ctOrder.Status == OrderStatus.Historical)
 {
 //Do stock management based on the OrderMode
 if (ctOrder.Mode == OrderMode.OUT)
 m_MyArticleRecordsById[m_MyOrders[i].ArticleId].Quantity
 -= ctOrder.AckQuantity;
 else if (ctOrder.Mode == OrderMode.IN)
 m_MyArticleRecordsById[m_MyOrders[i].ArticleId].Quantity += ctOrder.AckQuantit
y;
 else if (ctOrder.Mode == OrderMode.INV)
 m_MyArticleRecordsById[m_MyOrders[i].ArticleId].Quantity = ctOrder.AckQuantity
;
 //Locate the article in the article view and update quantity so we doesn't present
 stale data
 for (int j = 0; j < listViewArticles.Items.Count; j++)
 {
 if (m_MyOrders[i].ArticleId == (int)listViewArticles.Items[j].Tag)
 {
 listViewArticles.Items[j].SubItems[2].Text = m_MyArticleRecordsById[m_MyOr
ders[i].ArticleId].Quantity.ToString();
 break;
 }
 }
 //Locate the order in the order view and remove it
 for (int j = 0; j < listViewOrders.Items.Count; j++)
 {
 if (m_MyOrders[i].CTOrderId == (int)listViewOrders.Items[j].Tag)
 {
 listViewOrders.Items.RemoveAt(j);
 break;
 }
 }
 //Remove the order from the order list and order index
 m_MyOrdersByCTId.Remove(m_MyOrders[i].CTOrderId);
 m_MyOrders.Remove(m_MyOrders[i]);

 i -= 1;
 }
 else
 {
 //Update the status of the order in the order view and in the order list
 listViewOrders.Items[i].SubItems[7].Text = ctOrder.Status.ToString();
 m_MyOrders[i].CTStatus = ctOrder.Status.ToString();

 }
 }
 //Save changes to the order list in the storage file
 SaveOrders();
 }
 void OnOrderStatusChangedEvent(CTOrderStatusChangeEvent evt)
 {
 //Check to see if it's one of our orders we received the event for, if not just ignore the
 event
 if (!m_MyOrdersByCTId.ContainsKey(evt.Order.Id))
 return;
 OrderRecord order = m_MyOrdersByCTId[evt.Order.Id];
 //Search for the order in the order view
 for (int i = 0; i < listViewOrders.Items.Count; i++)
 {
 if (order.CTOrderId == (int)listViewOrders.Items[i].Tag)
 {
 //Update the order in the order view and in the order list with the new status
 listViewOrders.Items[i].SubItems[7].Text = evt.Order.Status.ToString();
 order.CTStatus = evt.Order.Status.ToString();

 //If the new status is TaskDone
 if (evt.Order.Status == OrderStatus.TaskDone)
 {
 //Do stock management based on the OrderMode
 if (evt.Order.Mode == OrderMode.OUT)
 m_MyArticleRecordsById[order.ArticleId].Quantity -= evt.Order.AckQuantity;
 else if (evt.Order.Mode == OrderMode.IN)
 m_MyArticleRecordsById[order.ArticleId].Quantity += evt.Order.AckQuantity;
 else if (evt.Order.Mode == OrderMode.INV)
 m_MyArticleRecordsById[order.ArticleId].Quantity = evt.Order.AckQuantity;
 //Locate the article in the article view and update quantity so we doesn't
 present stale data
 for (int j = 0; j < listViewArticles.Items.Count; j++)
 {
 if (order.ArticleId == (int)listViewArticles.Items[j].Tag)
 {
 listViewArticles.Items[j].SubItems[2].Text = m_MyArticleRecordsById[
 order.ArticleId].Quantity.ToString();
 }
 }
 }
 //Save changes to the order list in the storage file
 SaveOrders();
 break;
 }
 }
 }
 void OnQueueChangedEvent(CTQueueChangeEvent evt)
 {
 //Check to see if it's one of our orders we received the event for, if not just ignore the
 event
 if (!m_MyOrdersByCTId.ContainsKey(evt.Order.Id))
 return;
 OrderRecord order = m_MyOrdersByCTId[evt.Order.Id];
 //If the queue chane type is OrderDeleted
 if (evt.ChangeType == OrderQueueChangeType.OrderDeleted)
 {
 //Search the order view for the order
 for (int i = 0; i < listViewOrders.Items.Count; i++)
 {
 if (order.CTOrderId == (int)listViewOrders.Items[i].Tag)
 {
 //Remove the order from the order view, the order list and the order index
 listViewOrders.Items.RemoveAt(i);
 m_MyOrdersByCTId.Remove(order.CTOrderId);
 for (int j = 0; j < m_MyOrders.Count; j++)
 {
 if (m_MyOrders[j].CTOrderId == order.Id)
 {

 m_MyOrders.RemoveAt(j);
 break;
 }
 }
 //Save changes to the order list in the storage file
 SaveOrders();
 break;
 }
 }
 }
 }
 private void buttonCreateOrder_Click(object sender, EventArgs e)
 {
 CreateOrderDlg dlg = new CreateOrderDlg();
 //Open the CreateOrderDlg to enter the pick order information
 if (dlg.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 {
 ArticleRecord ar = m_MyArticleRecordsById[(int)listViewArticles.SelectedItems[0].Tag];
 //Create an order record
 OrderRecord order = new OrderRecord();
 order.ArticleId = ar.Id;
 order.ArticleNo = ar.ArticleNo;
 order.ArticleDesc = ar.ArticleDesc;
 order.Elevator = ar.Elevator;
 order.TrayNo = ar.TrayNo;
 order.Quantity = dlg.Quantity;
 order.ServiceOpening = dlg.ServiceOpening;
 order.Operation = dlg.Operation;
 try
 {
 //Call Compact Talk to add the order to the queue
 int orderId = m_CompactTalk.Command.AddToQueue(
 "MiniWMS:" + order.Id,
 order.Elevator,
 order.TrayNo,
 "",
 order.ServiceOpening,
 order.ArticleNo,
 order.ArticleDesc,
 (OrderMode)Enum.Parse(typeof(OrderMode), order.Operation),
 0,
 1,
 "",
 order.Quantity,
 "",
 "",
 "",
 "",
 "",
 "",
 true);
 order.CTOrderId = orderId;
 order.Id = orderId;
 order.CTStatus = "Selected";
 }
 catch (Exception ex)
 {
 MessageBox.Show("Failed to add order to Compact Talk\n\n" + ex.Message);
 return;
 }
 //Add the order to the order list and index
 m_MyOrders.Add(order);
 m_MyOrdersByCTId.Add(order.Id, order);
 //Save changes to the order list in the storage file
 SaveOrders();
 //Add a new ro to the order view
 ListViewItem lvItem = listViewOrders.Items.Add(order.ArticleNo);
 lvItem.SubItems.Add(order.ArticleDesc);
 lvItem.SubItems.Add(order.Quantity.ToString());
 lvItem.SubItems.Add(order.Operation);

 lvItem.SubItems.Add(order.Elevator);
 lvItem.SubItems.Add(order.TrayNo.ToString());
 lvItem.SubItems.Add(order.ServiceOpening.ToString());
 lvItem.SubItems.Add(order.CTStatus);
 lvItem.Tag = order.CTOrderId;
 }
 }
 private void buttonClose_Click(object sender, EventArgs e)
 {
 //Just close the window so the application can exit
 Close();
 }
 private void MainForm_FormClosing(object sender, FormClosingEventArgs e)
 {
 //Disconnect from Compact Talk
 m_CompactTalk.Disconnect();
 }
 private void listViewOrders_SelectedIndexChanged(object sender, EventArgs e)
 {
 //If no order selected in the order view, disable the ack button and empty the quantity
 field
 if (listViewOrders.SelectedIndices.Count < 1)
 {
 buttonExtAck.Enabled = false;
 textBoxQuantity.Text = "";
 return;
 }

 //If an order is selected in the order view, enable the ack button and
 //fill the quantity field with the quantity of the order
 buttonExtAck.Enabled = true;
 int orderId = (int)listViewOrders.SelectedItems[0].Tag;
 textBoxQuantity.Text = m_MyOrdersByCTId[orderId].Quantity.ToString();
 }
 private void buttonExtAck_Click(object sender, EventArgs e)
 {
 int orderId = (int)listViewOrders.SelectedItems[0].Tag;
 OrderRecord selectedOrder = m_MyOrdersByCTId[orderId];
 try
 {
 //Call Compact Talks ExtAckOrder method
 m_CompactTalk.Command.ExtAckOrder(
 selectedOrder.Elevator,
 selectedOrder.ServiceOpening,
 float.Parse(textBoxQuantity.Text),
 false
);
 }
 catch (Exception ex)
 {
 MessageBox.Show("Failed to acknowledge order. Error: " + ex.Message);
 }
 }
 }

Mini WMS sample are using a file to store its order list instead of a database. It’s
important that the orders are persisted to external storage so it’s possible to
synchronize orders during recovery.

8.2.4 How to get Tray example

Here is an example how to get the Elevator information and also the trays found in
that Elevator.
using System;
using Weland.CompactTalk;
using Weland.CompactTalk.Client;
using Weland.CompactTalk.Framework.Devices;
using Weland.CompactTalk.Framework.OrderManagement;
namespace SimpleClient
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 //Create an instance of the CTConnect type.
 CTConnection con = new CTConnection(null);
 //Connect to service a storageAddress (other then localhost)
 con.Connect(storageAddress);
 if (con.Connected)
 {
 //Hook up the order status event.
 con.OnOrderStatusChanged += new
 ClientOrderStatusChanged(OnClientOrderStatusChanged);
 Console.WriteLine("Adding an order to CompactTalk service");
 //Add an order to the service
 con.Command.AddToQueue("SimpleClient:1", "Sim_1", 1, "", 1, "", "",
 OrderMode.OUT, 0, 1, "", 100, "", "", "", "", "", "", true);
 // Get Elevator Information position 0
 ElevatorInfo elevatorInfo = con.Command.GetElevatorInfo()[0];
 // Get all Trays from that Elevator Id
 Tray[] trays = con.Command.GetTrays(elevatorInfo.Id);
 //Wait for input to terminate the program.
 Console.ReadKey();
 //Disconnect from the service.
 con.Disconnect();
 }
 }
 //This method is called every time the status is changed on the order.
 private static void OnClientOrderStatusChanged(CTOrderStatusChangeEvent evt)
 {
 Console.WriteLine("Status changed on order from " +
 evt.OldStatus.ToString()
 + " to " + evt.Order.Status.ToString());
 }
 }
}

9 Web Service
Compact Talk has a built in web service which is compatible with most client
platforms. Compact Talk is listening on the endpoint
http://<hostname>:20012/CommandConnection.
WSDL information can be retreived on the url
http://<hostname>:20012/CommandConnection?wsdl.
The web service supports SOAP 1.1 and follows WS-I BP 1.1. IIS does not have to
be installed.
This interface requires manual polling for event by use of the methods
ActivateEvents, ReActivateEvents, PollForEvent and PollForEvents.

9.1 Converting a CT 1.x client to 2.x

The major changes in the new interface are that transactions are now called orders
which are represented by the type PickOrder.
Deviceid is now called compatibilityid. The id used in the new interface was called
“name” in the old interface.
Event handling has also changed to a model where one must explicitly active an
event queue for events to be produced.

9.1.1 New event handling

To get events to be created by Compact Talk you need to create an event queue by
calling ActivateEvents or ReActivateEvents depending on the implementation of the
client or situation.
ActivateEvents will create a queue and return unique id of that queue.
ActivateEvents should only be called once for each client session.
ReActivateEvents will either reactivate or create a queue with the given id.
The queue that is created will have a keep alive timer, currently set to 15 minutes,
which is reset each time a call to one of the polling methods is made. When the timer
elapses the queue will be destroyed to prevent memory leaks.
The polling of events is done using either PollForEvent or PollForEvents given the
unique id of the queue.

9.1.2 Method translation table

The following list table changes in available methods and their usage.

Old method New method Description
AddToQueue [AddTrayConfig]

AddToQueue
Tray configuration is
no longer added with
the AddToQueue
method call.

AddToQueue +
SetTransBoxCoordinates

AddToQueueWithSingleBoxCoords This combination of
methods is normally
used when
accessories like
lightbar or
laserpointer is used.
The old method is
error prone.

Init Does not exist in the
new interface

Start ResumeService("Devices") A better solution is to
target individual
elevators instead of
all of them.
Exampel:
ResumeService(“H1”)
Will only resume the
elevator with id “H1”.

Stop (bool returnTrays) PauseService("Devices")
[ReturnTrays("Devices")]

Same advice as the
method above.

ClearTransQueue PauseService("Devices")
ReturnTrays("Devices")
ClearOrderQueue("Devices")
ResumeService(“Devices”)

Same advice as the
method above.

DeleteTransaction DeleteOrdersByCondition This method is tricky
to use because the
format of the
condition depends on
the storage provider.
Some properties
have been renamed
like
"ELEVATORNAME"
is now "ELEVATOR".

GetSize GetOrderCount

Sort Is not supported by
the new interface.

TransActivate ActivateOrder
GetAllTransactions GetOrders
GetTransactionAtOpening GetOrderAtOpening This method should

not be used to
monitor the order
flow. Events that
signal status changes
on the order are the
correct way.

ConfirmAckTransaction ConfirmOrderAck This method is only
useful when
confirmation of
orders have been
activated in the
configuration to
emulate the old
behavior.

ExtAckTransaction ExtAckOrder
AreAllDevicesReadyForRunnin
g

 Not supported in the
new interface.

SetLoggMask
ReadLoggMask

SetLogThreshold

GetDeviceVersion
GetDeviceSignature

GetElevatorInfo
GetSpecificElevatorInfo(strin
g elevatorId)

In the new interface
an object of the type
ElevatorInfo is
retrieved which
contains all

properties of the
elevator.

GetMaxTrays GetMaxTrayCount
GetTrayStatus GetTray If GetTray returns an

object of the type
Tray if the tray exists
otherwise null.

GetTrayBlockedStatus
GetTrayLevel
GetTrayWeight
GetTrayHeight

GetTray In the new interface
an object of the type
Tray is retrieved
which contains all
properties of the tray.

SetTraySize Not supported in the
new interface.

GetAllDevices GetElevatorInfo
GetDetailedDeviceInfo GetSpecificElevatorInfo ElevatorInfo contains

less than the old
DeviceInfoDetailed
type did.
See the
documentation of
ElevatorInfo in
CompactTalkAPI.ch
m for more
information.

GetField GetOrder Retrieve an object of
the type PickOrder to
get all the properties
of the order.

WaitForEvent Is not supported in
the new interface.

Old event New event Description
CTAckEventArgs CTAckRequestEvent
CTDeviceEventArgs CTServiceStateChangedEvent
CTStatusEventArgs CTOrderStatusChangeEvent
CTElevatorStatusEventArgs CTOpeningModeChangedEvent

CTOpeningUserChangedEvent

10 XML Interface
XML-interface allows method calls via XML files. When using this interface Compact
Talk is forced to use a single order mode which means that it only accepts one order

at the time per elevator and opening. Compact Talk will auto acknowledge if there is
an order with the status AtPlace in the queue before it adds a new order.
The documentation for this interface begins with an overview over the available
methods and then continues with more details for the methods and some examples
how they can be used.

10.1 Overview

The available Commands/Methods for the XML Interface are the following:

Command Description

AddToQueue AddToQueue is used to put orders in

queue to Compact Talk.

ExtAckOrder ExtAckOrder is used to externally

acknowledge/confirm an order.

Corresponding functionality can be

done by using AddToQueue in

combination with tray = 0

AddTrayConfig Has to be used when an accessory is

used that needs the full layout out of the

tray. (Example of such accessory is the

Picking Display)

ResetElevator This method is used to abort all active

orders in the elevator and force the

elevator to return active trays.

Corresponding functionality can also

done by using AddToQueue in

combination with tray=1000, and a

parameter for the specific opening.

10.2 Commands

10.2.1 AddToQueue method

AddToQueue creates a new order in Compact Talk queue. All order received are
executed in the sequence they are retrieved.
List of available parameters when using AddToQueue

Parameter Mandatory Description

TransId Yes/No If response messages is used this element
is mandatory. It is used to tie the command
and response together.

ElevatorId Yes Identity of the elevator that is the target for
the order. Must be the id that is set in the
device configuration.

Tray Yes The identity of the tray to be fetched. Must
be an existing tray in the machine.

Note!
There is also two reserved tray numbers
which can be used for special functionality
If tray = 0 is used Compact Talk will handle
it as an ExtAckOrder method.
If tray = 1000 is used Compact Talk will
handle it as a ResetElevator method.

Opening Yes Number of the service opening on the
elevator.
Can be 1,2 or 3 depending on how many
openings the machine has.
Note!
There is also a special opening number
“99” which can be used to perform
ResetElevator functionality.

NoReturnOfTray No Instructs the elevator what to do with the
tray when the operator acknowledge on the
panel.
If set to 0 = Tray return when order is
confirmed at panel
If set to 1 = Tray is not returned when order
is confirmed at panel, waits for an external
acknowledgement from the WMS.
If the value is not specified the default
value of 1 will be used

NextTray No Specifies the identity of the next tray (1-n).
Has to be used if the Twin functionality is
desired.
Default value is set to = 0

ArtNo No Article number. Displayed on the panel and
the picking display accessory to guide the
operator.

ArtDescr No Article description. Displayed on the panel
and the picking display accessory to guide
the operator.

Quantity No The quantity for the order. Displayed on
the panel and the picking display
accessory to guide the operator.

Extra information for accessories

Info1 No Additional order information displayed on
the picking display.

Info2 No Additional order information displayed on
the picking display.

Info3 No Additional order information displayed on
the picking display.

Info4 No Additional order information displayed on
the picking display.

Info5 No Additional order information displayed on
the panel and picking display.

CurrentBoxName Yes if
PickDisplay else
No

Location on tray. Used by picking display.

Mode Yes if
PickDisplay else
No

This value has no logical functionality in
Compact Talk. However it is used to show
the operator which operation should be
done.

Depending on the value there is a symbol
shown for the operator on the Picking
Display.

Available modes
IN = Put away, OUT = Pick, INV =
Inventory.

TrayCoord No Information that can be presented on the
panel.

Job No Name of the job the order is a part of.
Displayed on picking display to guide the
operator.

XPos Yes if “Laser
pointer/lightbar”
should be used
otherwise No.

X-position of the box
If AddTrayConfig is used there’s no need
for this.

YPos Yes if
Laserpointer
otherwise No.

Y-position of the box
If AddTrayConfig is used theres no need
for this.

XSize Yes if LightBar
otherwise No.

The width of the box
If AddTrayConfig is used there’s no need
for this.

Para1 Yes if LightBar
otherwise No.

If LightBar is used this value should be set
to what should be presented in the Y-digit
display
If AddTrayConfig is used there’s no need
for this.

AddToQueue Examples
This section illustrates some examples of how the XML interface method calls can
be done.

Example 1 - Fetch single tray (no twin)
This shows a simple example how to fetch one tray in an elevator without any
accessories

<AddToQueue>
 <ElevatorId>E1</ElevatorId>
 <Tray>1</Tray>
 <Opening>1</Opening>
</AddToQueue>

The above example adds an order, fetch tray number 1 to opening 1 for elevator E1.

When next order is sent the following happens.

1. If next order uses same tray number as already being present in the opening
at the elevator. The tray is left on the opening. Although existing order is
acknowledged.

2. If next order is to be on another tray number the order is acknowledged and
the tray changed to the ordered number.

Figure 1. Sequence diagram for elevator with no Twin functionality

Example 2 – AddToQueue with Twin functionality
To be able to use the machines twin functionality, it’s required to send two tray
numbers in the AddToQueue method. This is done by using <Tray> and <NextTray>
at the same time.
<AddToQueue>
 <ElevatorId>E1</ElevatorId>
 <Tray>1</Tray>
 <Opening>1</Opening>
 <NextTray>2</NextTray>
</AddToQueue>

The above example shows how to add an order to fetch tray number 1 to opening 1
on elevator E1. It also tells the machine to fetch tray number 2 to be ready for twin
mode. The machine then awaits order from WMS.

Scenario 1 – Normal Twin
If next order is the same tray number that was sent in the <NextTray> parameter
previously then the machine will change to that tray (normal twin)

WMS CT Elevator

AddToQueue (tray=1,nextTray=2)

FetchTray(1)

AddToQueue (tray=2, nextTray=n)

FetchTray (2)

ExtAckOrder

NextTray(2)

Twin tray 2

NextTray(n)

Twin tray n

Move tray 1 to
opening

Return tray 1

Move tray 2 to
opening

Figure 2. Sequence diagram for normal Twin operation

Scenario 2 – Expected Twin not desired
If instead the next order is another tray number than the previously sent <NextTray>.
The machine will return the tray that’s waiting and fetch the new ordered tray

number. The machine will then change to the new tray number. See sequence
description.

WMS CT Elevator

AddToQueue (tray=1,nextTray=2)

FetchTray(1)

AddToQueue (tray=3, nextTray=n)

FetchTray (3)

ExtAckOrder

NextTray(2)

Twin tray 2

NextTray(n)

Twin tray n

Move tray 1 to
opening

Return tray 2

Twin tray 3

Return tray 1

Move tray 3 to
opening

Figure 3. Sequence diagram for aborted Twin operation

10.2.2 ExtAckOrder

ExtAckOrder method is to be used to externally acknowledge/confirm an order. If
property NoReturnOfTray is set equal to 1. An external acknowledge is required.

Parameter Mandatory Description

ElevatorId Yes Identity of the elevator that is the target for
the order. Should be the id that is set in the
device configuration.

Opening Yes Number of the service opening 1 – n

TransId Yes/No If response messages are used this
element is mandatory. It is used to tie the
command and response together.

Example 1
The following example shows an External Acknowledgement on Elevator E1,
opening 1.
<ExtAckOrder>
 <ElevatorId>E1</ElevatorId>
 <Opening>1</Opening>

</ExtAckOrder>

Example 2
Same functionality can be achieved by using the AddToQueue command by setting
tray to 0.
<AddToQueue>
 <ElevatorId>E1</ElevatorId>
 <Tray>0</Tray>
 <Opening>1</Opening>
</AddToQueue>

10.2.3 AddTrayConfig

To be able to use accessories such as PickDisplay the AddTrayConfig method
needs to be used. This to provide the accessory information about the layout of the
tray. Data sent to Compact Talk about the tray configuration is cached. Because of
the cache the configuration of the layout of the tray only needs to be added to
Compact Talk a second time if it has changed.

Parameter Mandatory Description

ElevatorId Yes Identity of the elevator that is the target.

Tray Yes The identity of the tray to be fetched. Must
be an existing tray in the machine.

Boxes Yes A list of boxes that represents storage areas
on the tray.

TransId Yes/No If response messages are used this
element is mandatory. It is used to tie the
command and response together.

Example
This example shows to use AddTrayConfig method for one tray (tray 1) in Elevator
E1. Finally the example shows how to use the added tray layout in combination with
AddToQueue.
<AddTrayConfig>
 <ElevatorId>E1</ElevatorId>
 <Tray>1</Tray>
 <Boxes>
 <Box>
 <Name>A-1</Name>
 <XPos>0</XPos>
 <YPos>0</YPos>
 <XSize>244</XSize>
 <YSize>164</YSize>
 </Box>
 <Box>
 <Name>A-2</Name>
 <XPos>0</XPos>
 <YPos>164</YPos>
 <XSize>244</XSize>
 <YSize>164</YSize>
 </Box>
 </Boxes>
</AddTrayConfig>
<AddToQueue>
 <ElevatorId>E1</ElevatorId>

 <Tray>1</Tray>
 <Opening>1</Opening>
 <NoReturnOfTray>0</NoReturnOfTray>
 <CurrentBoxName>A-1</CurrentBoxName>
</AddToQueue>

CurrentBoxName is in this example is set to “A-1” which is currently described in
the AddTrayConfig.

10.2.4 ResetElevator

Maintenance function that recovers orders and elevator for the specified
opening/openings

Parameter Mandatory Description

ElevatorId Yes Identity of the elevator that is the target.

Opening No Number of the service opening.
Use opening 1 – n. 99 means entire
elevator/ all openings on the elevator.
If value is not set 99 will be used as
standard.

TransId Yes/No If response messages are used this
element is mandatory. It is used to tie the
command and response together.

Example 1
The following example shows a ”reset of” opening 1 in elevator E1.
<ResetElevator>
 <ElevatorId>E1</ElevatorId>
 <Opening>1</Opening>
</ResetElevator>

Example 2
Same functionality can be achieved by using the AddToQueue command with tray
number 1000.
<AddToQueue>
 <ElevatorId>E1</ElevatorId>
 <Tray>1000</Tray>
 <Opening>1</Opening>
</AddToQueue>

10.3 Response Messages

If response messages are needed it’s possible, in the configuration, to select which
level of feedback that is wanted.

10.3.1 CommandResponse

Parameter Description

Command The name of the command

Result If 0, the command failed

TransId If response messages is used this element is mandatory. It is
used to tie the command and response together.

ErrorMessage Contains a description of the error that occurred. Only included
when Result is 0..

Example 1
An example of a successful command.
<CompactTalkResponse xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Response xsi:type="CommandResponse">
 <TransId>1</TransId>
 <Command>AddToQueue</Command>
 <Result>916</Result>
 </Response>
</CompactTalkResponse>

Example 1
An example of an unsuccessful command.
<CompactTalkResponse xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Response xsi:type="CommandResponse">
 <TransId>3</TransId>
 <Command>AddToQueue</Command>
 <Result>0</Result>
 <ErrorMessage>[E=G2_1,T=333] ValidateOrderData: Tray number 333 does not exist
within elevator G2_1</ErrorMessage>
 </Response>
</CompactTalkResponse>

10.3.2 OrderStatusResponse

Parameter Description

TransId If response messages are used this element is mandatory. It is
used to tie the command and response together.

Status Either Sent, NextAtPlace or AtPlace depending on configuration.

<?xml version="1.0" encoding="utf-8"?>
<CompactTalkResponse xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Response xsi:type="OrderStatusResponse">
 <TransId>2</TransId>
 <Status>Sent</Status>
 </Response>
</CompactTalkResponse>

10.3.3 TaskDoneResponse

Parameter Description

TransId If response messages are used this element is mandatory. It is
used to tie the command and response together.

Mode Either IN, OUT or INV. Same value that was used in the
AddToQueue command.

AckQuantity The amount of material handled by the operator. Only has a
value if NoReturnOfTray was set to 0 in the AddToQueue call.

<?xml version="1.0" encoding="utf-8"?>
<CompactTalkResponse xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Response xsi:type="TaskDoneResponse">

 <TransId>2</TransId>
 <Mode>OUT</Mode>
 <AckQuantity>0</AckQuantity>
 </Response>
</CompactTalkResponse>

11 Import and Export
The import and export functions of Compact Talk is a plugin based solution which in
a basic installation contains plugins for basic flat file import and export, but others
can be added by other parties.

11.1 Import

To import files to Compact Talk there are three things that needs to be done, adding
an instance of an importer to the configuration, basic configuration and defining the
format of the file content. This is done with the configuration tool. See the
Configuration Manual [1] for more details and examples.

11.2 Export

To export files from Compact Talk there are three things that needs to be done,
adding an instance of an exporter to the configuration, basic configuration and
defining the format of the file content. This is done with the configuration tool. See
the Configuration Manual [1] for more details and examples.

11.3 Tray configuration import

Tray configuration import is a specialized type of import that uses a flat file to handle
tray layout configurations. To aid the operator Compact Talk uses this configuration
to control accessory devices highlighting the boxes where an article is placed. There
are methods available in the client interface that do the same thing, but there are
cases where the import method is to be preferred.

11.3.1 Configuration

Use the configuration tool to select the file to be imported, see the Configuration
Manual [1] for details.

11.3.2 Format

The tray configuration file needs to contain one box per row split up in 9 columns,
where 2 are optional, separated with a pipe character ‘|’.
The nine columns are:
1. Elevator identity
2. Tray number
3. The name of the box. Used when adding an order to identify in which box the

article is placed.
4. Position in X (mm)
5. Position in Y (mm)

6. Size in X (mm)
7. Size in Y (mm)
8. Optional numeric value. Implementation specific.
9. Optional text value. Implementation specific.

Example:
Elevator_1|1|A-1|101|1|100|200
This example shows a box for Elevator_1 tray 1 with the name A-1, with coordinates
101, 1, width 100 and height 200.

